
ORM diagrams intro

Max Talanov.

February 18, 2007.

Contents

1 Intro 1

2 Problem 2

3 Solution 3
3.1 Indicators . 3
3.2 Elements . 3
3.3 Associations . 4
3.4 References . 4
3.5 Flags . 6
3.6 Views . 6

3.6.1 Complete view . 7
3.6.2 Class centric view . 8
3.6.3 Mapping centric view 10

4 Tools 11

5 Conclusion 12

6 See also 12

1 Intro

Have you ever asked yourself a question, what should be designed first: UML
diagram or DSD(Data structure diagram)? And why you choose this way,
only because your favorite framework or methodology suggest to do this way,
or why it is necessary to generate not optimal DB structure or model classes?

1

Why we still create ORM in the implementation stage though it should be
created in design stage?

2 Problem

In a company I work, for some reason, we have used AppFuse as a base for
web-development and DB centric approach.

1. Create DSD

2. Generate DB according to DSD

3. Generate ORM and model classes via MiddleGen

This approach made a good job for us. But, some day we have tried
Grails (Rails for Groovy) web-development. The Rails development implies
different ORM approach, which I called, model centric:

1. Create class diagram (model classes)

2. Generate model

3. Add mapping meta definitions

4. Generate DB

To be honest, we often skipped first two stages.
Rails development approach was very attractive, but it’s pluses (coding by
convention) could be considered as minuses. When I came to our DB archi-
tect with new ideas of new web-development approach, he told me: ”Well,
this is no good because this coding convention is not compatible with our
coding convention and this is bad because we can not generate as good DB
as it should be in our project”.
About our project: it is not simple site, but web-based document flow.
Then it was my turn to disagree: ”So, you suggest to generate model, fol-
lowing DB centric approach, but you know that this is not the best way out,
because generated model is not so good as it should be”. After some minutes
of discussion, we have decided that we need some tool for ORM modeling.
That was the beginning of the ORM diagrams.

2

3 Solution

First of all I have started to digging in the Hibernate, this mapping was well
developed, but some times seems too complex. I have found a relief and that
was the ActiveRecord of Ruby. Sometimes it seemed to me that it clarified
obscure moments of Hibernate. The idea was to create clear and flexible
diagram representation of ORM with key options inherited from Hibernate
and ActiveRecord.

3.1 Indicators

When I draw ER tables and UML classes in one diagram and tried to add
some mapping tables, I saw that I needed to distinguish one from an other
unambiguously. The solution was quite simple, indicators:

(c) for class

(m) for mapping

(t) for table

(c)User (t)USER

User and Occupation mapping minimized view

(c)Occupation (t)OCCUPATION

 *

f

 1

M

M

Figure 1: Mapping minimized view

On Figure 1 is only one type of indicator: mapping indicator.
This diagram represents minimized mapping centric view, there are 2 map-
ping tables, one association one to many with foreign key in USER table.
Names of mapping tables are formed by the rule (c)ClassName (t)TABLENAME.

3.2 Elements

Then I have tried to combine main mapping construction elements of Hiber-
nate and ActiveRecord.

3

<id> identification property declaration (corresponding primary key)

<p> property declaration, could be omitted

<scaffold> scaffold declaration

I have used id and property elements from Hibernate mapping and added
scaffold from Active record. This way, I tried to use properties with and
without scaffolding in the same class. (If scaffold is used all properties that
were not specified explicitly, use scaffold in case of ActiveRecord or generated
according to naming convention in case of Hibernate.

On Figure 2 are four mappings tables. Elements and associations are in
<> followed by property name.

3.3 Associations

Inspired by Active record and Hibernate XDoclets, I have used Hibernate
association names with ActiveRecord association modifiers. I have used the
same notation for associations and elements, because constructs do not in-
terfere, though semantics is completely different.

<121> one to one association

<12m> one to many association

<m21> many to one association

<m2m> many to many association

Main idea of association declaration, was to make it strait-forward, simple
and unambiguous. ActiveRecord notation was quite close to it. Something
like: “map this property of this class to that class through this table with this
foreign key pointing to our class and that foreign key pointing to associated
class”.
Ex.: (c)Occupation (t)OCCUPATION mapping: one to many association of
the property users of the class User, using foreign key U_OID of default table
(OCCUPATION).

3.4 References

References play important role in mapping description. Mapping is a de-
scription of relationship between entities expressed with references.

4

M (c)User (t)USER

<id>uid (col)UID

<p>name (col)UNAME

User and Occupation mapping: maximized view

<m21>occupation (k)U_OID

M (c)Occupation (t) OCCUPATION

<id>oid (col)OID

<p>name (col)ONAME

<12m>users: User (k)U_OID [l] [i]

 *

f

 1

many-to-one association

M (c)Address (t)ADDRESS

<id>aid (col)AID

<p>address (col)ADDRESS

<m21>user (t)ADDRESS_USER (k)A_U_AID [i] [o] [n]

<m2m>addresses: Address (t)ADDRESS_USER (k)A_U_UID[u] (ak) A_U_AID

 1

f

 *

f

one-to-many with join table

association

M (c)Role (t)ROLE

<id> rid (col)RID

<p> name (col)NAME
 *

f

 *

f

many-to-many

association

<m2m>roles: Role (t)ROLE_USER (k)R_U_UID[u] (ak) R_U_RID

<m2m>users :User (t)ROLE_USER (k) R_U_RID (ak) R_U_UID

Figure 2: Mapping maximized view

5

I have used the same syntax for references and indicators, for obvious rea-
sons. Mapping names are constructed as a combination of two references:
class and table.
This is references unexhaustive list:

(c) class

(t) table

(k) key (primary or foreign)

(ak) association key (foreign)

(col) column, used in property mapping definition

3.5 Flags

Flags are simple Boolean modifiers of associations and elements, for example:

i inverse

l lazy

o optional

n not null

Flags usage depends on notation: Hibernate or Active record. Flags above
are Hibernate flags: inverse to define one end of bidirectional association,
lazy to define lazy association, optional to define optional property, not null
to define property that can not contain null value.

3.6 Views

There are three kind of views:

• Complete view

• Class centric view

• Mapping centric view

6

M (c)User (t)USER

<id>uid (col)UID

User

-uid: long

-name: String

-occupation: Occupation

-addresses: Set

-roles: Set

<p>name (col)UNAME

C USER

p UID ID

 UNAME VARCHAR(255)

T

User and Occupation mapping: complete maximized view

<m21>occupation (k)U_OID

OCCUPATION

p OID ID

 ONAME VARCHAR(255)

T

f U_OID ID

 Occupation

-oid: long

-name: String

-users: Set

C M (c)Occupation (t) OCCUPATION

<id>oid (col)OID

<p>name (col)ONAME

<12m>users: User (k)U_OID [l] [i]

 *

f

 1

Classes Mappings Tables

many-to-one association

ADDRESS_USER

p A_U_ID ID

f A_U_UID ID

T

ADDRESS

p AID ID

 ADDRESS VARCHAR(255)

T

f A_U_AID ID

 Address

-aid: long

-address: String

-user: User

C
M (c)Address (t)ADDRESS

<id>aid (col)AID

<p>address (col)ADDRESS

<m21>user (t)ADDRESS_USER (k)A_U_AID [i] [o] [n]

<m2m>addresses: Address (t)ADDRESS_USER (k)A_U_UID[u] (ak) A_U_AID

 1

f

 *

f

one-to-many with join table

association

ROLE_USER

p R_U_ID ID

f R_U_UID ID

T

ROLE

p RID ID

 NAME VARCHAR(255)

T

f R_U_RID ID

M (c)Role (t)ROLE

<id> rid (col)RID

<p> name (col)NAME

 Role

-rid: long

-name: String

-users: Set

C

 *

f

 *

f

many-to-many

association

<m2m>roles: Role (t)ROLE_USER (k)R_U_UID[u] (ak) R_U_RID

<m2m>users :User (t)ROLE_USER (k) R_U_RID (ak) R_U_UID

Figure 3: Complete view.

3.6.1 Complete view

Consists of UML classes, ER and mapping parts, see Figure 3. Each part
could be separated by swim line, like in SysML. Class-table mappings are
shown as simple lines, associations are shown as arrows, bidirectional or
unidirectional. Mapping diagram consist of mapping tables with complete
description of properties and associations. This view is unambiguous, but
seem to be redundant and overloaded, especially in case of big projects dia-
grams.
On Figure 3 are: 4 mappings with three types of associations between them.

(c)Occupation (t)OCCUPATION is class-table mapping with: id “oid”
property set to column OID (primary key of OCCUPATION table,
property “name” set to column ONAME, one to many association with
class User is set as property “users” with foreign key U_OID of default
table USER, association line shows f near (c)User (t)USER mapping,
that contains foreign key. All rest class-table mappings are formed in
the same way.

(m)Occupation (m)User is many to one association, uses property Occu-
pation.users in one to many association with class User and property
User.occupation with foreign key USER.U_OID in many to one associ-
ation with Occupation class. This mapping is shown as a bidirectional
arrowhead association line.

7

(m)User (m)Address is one to many association with join table ADDRESS_USER,
uses property User.addresses with foreign key ADDRESS_USER.A_U_UID
which is unique, association key ADDRESS_USER.A_U_AID in many
to many association with Address class and property Address.user with
foreign key ADDRESS_USER.A_U_AID, it is optional, nullable and
inverse in many to one association with class User.

(m)User (m)Role is many to many association with join table ROLE_USER,
uses property User.roles with foreign key ROLE_USER.R_U_UID, which
is unique, association key ROLE_USER.R_U_RID in many to many
association with class Role and property Role.users with foreign key
ROLE_USER.R_U_RID and association key ROLE_USER.R_U_UID
in many to many association with class User.

This is exhaustive, but heavy loaded view. It contains complete description
of mappings in special mapping tables, it is quite tightly linked to Hibernate
syntax with some ActiveRecord extensions.

3.6.2 Class centric view

Consist of UML class diagram, mapping lines with description and DSD.
I have tried to create new kind of view not tigtly linked to Hibernate or Ac-
tiveRecord notation. I have chosen classes as a base for mapping description,
because both Hibernate and ActiveRecord are class centric, so I have tried
to create notation as close as possible to UML. See Figure 4. I have added
mapping constructs to class descriptions.

Main changes, in comparison to Complete View on Figure 2 are: I have
changed <scaffold> to <[s]> element-flag, associations arrows changed to
aggregation with additional description of properties and foreign keys of as-
sociation. I have used (M) indicator to create many-to-many association
with intermediate table.
Mainly, mapping is based on lines in this diagram.

class-table shown by plan line

class-class is shown by aggregation line, labeled with multiplication, class
property name and foreign keys names in case of join table mapping

On Figure 4 are four classes, four class-table mappings and three class-
class associations.

(c)Occupation (t)OCCUPATION mapping contains one property with
scaffold and one without, name is set to ONAME column.

8

M

User

-<[s]><id>uid: long

-name: String (col)UNAME

-<m21>occupation: Occupation

-<m21>addresses: Set

-<m2m>roles: Set

C

USER

p UID ID

 UNAME VARCHAR(255)

T

Class centric view

OCCUPATION

p OID ID

 ONAME VARCHAR(255)

T

f U_OID ID

 Occupation

-<[s]><id>oid: long

-name: String (col) ONAME

-<[s]><12m>users: Set

C

 users

Classes Tables

many-to-one association

ADDRESS_USER

p A_U_ID ID

f A_U_UID ID

T

ADDRESS

p AID ID

 ADDRESS VARCHAR(255)

T

f A_U_AID ID

 Address

-<[s]>aid: long

-<[s]>address: String

-<12m>user: User

C

 user (k) A_U_AID

1..*

one-to-many with join table
association

ROLE_USER

p R_U_ID ID

f R_U_UID ID

T

ROLE

p RID ID

 NAME VARCHAR(255)

T

f R_U_RID ID

 Role

-<[s]>rid: long

-<[s]>name: String

-<m2m>users: Set

C

 roles (k) R_U_UID

1..*

many-to-many
association

 addresses (k) A_U_UID

M

 users (k) R_U_RID

1..*

M

 occupation (k) U_OID

1..*

Figure 4: Class centric view.

9

(c)Occupation (c)User many to one association contains property Occu-
pation.users of type Set in one to many association, property User.occupation
of type Occupation in many to one association with foreign key U_OID
of default table of User class mapping, USER.

(c) User (c)Address many to one association with join table ADDRESS_USER,
contains property User.addresses of type Set with corresponding for-
eign key ADDRESS_USER.A_U_UID in many to one association and
property Address.user of type User with corresponding foreign key
ADDRESS_USER.A_U_AID in one to many association.

(c)User (c)Role many to many association with join table ROLE_USER,
contains property User.roles of type Set with corresponding foreign key
ROLE_USER.R_U_UID in many to many association and property
Role.users of type Set with corresponding foreign key ROLE_USER.R_U_RID
in many to many association.

This view stands little bit aside of two other views, but is quite complete and
exhaustive and less redundant than others.

3.6.3 Mapping centric view

User and Occupation mapping: mapping view

M (c)User (t)USER

<id> uid :UID

<p> name :UNAME

<m21> occupation (k)U_OID

M (c)Occupation (t)OCCUPATION

<scaffold>

 *

f

 1

<12m>users: User (k)U_OID [l] [i]

Figure 5: Mapping centric view.

This view consist of mapping diagram (a-la MiddleGen) only. See Fig-
ure 5, uses mapping description of the complete view, but no classes and

10

tables included in it. This view is good for big projects with overloaded
diagrams.

4 Tools

There are a lot of really good tools for creating ER and UML diagrams, but
I have found only one tool for complex solution for both of diagrams types,
see ORM diagram solution of Visual paradigm. I suppose this not enough
and their approach is too strait forward.
All diagrams above have been created with Dia, it is real good but has
several limitations, and not really UML or ER tool, that’s why I had to use
(M) indicator in all class-class associations in Class centric view, see Figure 4,
Dia does not support bidirectional aggregation. I have tried to create ORM
like diagram in ArgoUML, see Figure 6. Resulting diagram is not so good as
it should be, because some limitations based on UML notation, but seems to
me that it could be extended to support ER and ORM diagrams.

(c) Occupation

-<[s]><id> oid : long
-<[s]> name : String
-<[s]><12m>users [1..*] : Set

(c) User

-<[s]><id> uid : long
-<[s]>name : String
-<12m>occupation : (c) Occupation
-<m2m>roles : Set

occupation2users

-users

1..*

-occupation (k) U_OID

(t) OCCUPATION

+OID : ID
+NAME : VARCHAR

+ orm.example.model
+ orm.example.tables

(c) Role

-<[s]><id>rid : long
-<[s]>name : String
-<m2m>users : Set

(t) ROLE_USER

1..*
-roles (k) R_U_UID

1..*

-users (k) R_U_RID

(t) ROLE_USER

+R_U_ID : ID
+R_U_UID : ID
+R_U_RID : int

(t) USER

+UID : ID
+NAME : VARCHAR
+OID : ID

(t) ROLE

+RID : ID
+NAME : VARCHAR(255)

Figure 6: ORM generated with ArgoUML

11

http://resource.visual-paradigm.com/object_relational_mapping/visual_modeling/using_orm_diagram.html

5 Conclusion

Does not matter which way we use: draw UML class diagrams and then
create DSDs or draw DSDs first, we create ORMs during implementation
stage, though ORMs play important role in modern projects and should be
developed during design stage. Even more, generating model classes and
ORMs from DB schema (MiddleGen way) or generating DB tables from
model classes (ActiveRecord way) has several minuses: not so good DB struc-
ture or not so good model classes structure. We can work it out, creating
model classes diagram and DSD, but mappings are still in implementation
stage. That’s why, I have tried to create some kind of notation suitable for
mapping description and produced three views. Most interesting is Class
centric view not so overloaded and based on UML notation, see Figure 4.
This is first stage, but still useful, ORM diagram is helpful during creation
HQL requests, second stage should be creation of the proper tool for com-
plete UML-ER-ORM design. It seems that open source Java based ArgoUML
UML modelling tool could be good starting point to test the concepts of the
complex UML - ER - ORM diagrams solution.

6 See also

1. NHibernate site

2. ActiveRecord for .NET site

3. ActiveRecord for Ruby on rails

4. Hibernate site

5. ArgoUML site

6. ORM diagram implementation of Visual paradigm company

12

http://www.hibernate.org/343.html
http://www.castleproject.org/activerecord/index.html
http://api.rubyonrails.org/files/vendor/rails/activerecord/README.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/
http://argouml.tigris.org/
http://resource.visual-paradigm.com/object_relational_mapping/visual_modeling/using_orm_diagram.html

	Intro
	Problem
	Solution
	Indicators
	Elements
	Associations
	References
	Flags
	Views
	Complete view
	Class centric view
	Mapping centric view

	Tools
	Conclusion
	See also

